N
-3

f

AD-A247 308
LT

Decomposition of Balanced Matrices.

Part IV: Connected Squares
Michele Conforti’

T . . Gérard Cornuéjols2
and 3

-

October 1991

This decument has been approved

for public release ard sale; its 92_
ditibulon o vaialed " LT

Hiin

This work was supported in part by NSF grants DDM-8800281, DDM-8901495 and

DDM-9001705.

1Dipartimento di Matematica Pura ed Applicata, Universita di Padova, Via

Belzoni 7, 35131 Padova, Italy.
2Carnegie Mellon University, Schenley Park, Pittsburgh, PA 15213.
3New York University, 100 Trinity Place, New York, NY 10006.

92 3 03 023

Management Science Research Report #MSRR-572

ﬁ5539
il

%




Q=
".Q

Figure 1: Connected squares

1 The Main Result

In this part we prove the following result:

Theorem 1.1 Let G be a wheel-free bipartite graph which is signable to be
balanced and contains connected squares. If the graph G has no biclique
cutset, then there exist some connected squares ¥ = CS(P,, P2, P3, Py) and a
2-join, separating V(P,) U V(PR,), from V(Ps) U V(Fy).

We consider connected squares CS(P,, P2, P3, Py) in a wheel-free bipartite
graph G which is signable to be balanced and we define P, 1<i<4tobe
the subpath obtained from P; by removing its endnodes. We assume that
a,b,c,d€ V¢ and e, f,g,h € V' and we use the notation of Figure 1.

2 A Classification of Nodes and Paths

The following theorem characterizes the strongly adjacent nodes to connected
squares ¥ = CS(P,, P2, P53, ).
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Figure 2: Strongly adjacent nodes

Theorem 2.1 Let v be a strongly adjacent node to connected squares ¥ =

CS(P1, P,, Ps, Py). Then one of the following holds:

e Node v has ezactly two neighbors in L, both contained in P;, fori =
1,2,3,4.

e Node v is of one of the following types, see Figure 2:

Type a Node v has three neighbors in I, two of them being a,c ore,g
or b,d or f,h. If v € V<, the third neighbor is in P orin B,. If
v € V", the third neighbor is in Py or in Pj.

Type b Node v has ezactly two neighbors in ¥ which are a,c ore,g
orb,dor f,h.

Type ¢ Node v has ezactly two neighbors in ¥ and if v € V°, then v
has one neighbor in P, and one in P;. Ifv e V", then v has one
neighbor in P; and one in P,.

Proof: Let w be a strongly adjacent node to X, and assume w.l.o.g. that
w € V°. Then w cannot be adjacent to all the nodes in the set {e, f,g,k}
otherwise w is the center of a wheel. This implies that w cannot have neigh-
bors in all the paths Py, P;, Ps, P,, otherwise, assume w.l.o.g. that w is not

. adjacent to e, then there is a 3PC(w,e).

Now assume w.l.o.g. that w has no neighbors in P; and consider the
parachute II having a, g, c as short top, a, P,,b, f and c, P,,d, f as long sides
and P; as middle path. Then N(w) N V(X) = N(w) N V(II). Hence we

., apply Theorem 2.1(IIl) to the parachute II. The first case of the above

theorem corresponds to the first case of Theorem 2.1(I1I). If node w is of




Type a[2.1(III)], then w is of Type b in this theorem and if node w is of
Type b[2.1(III)], then w is of Type ¢ in this theorem. Node w cannot be of
Type c[2.1(IIT)], else f is the center of an odd wheel. Node w cannot be of
Type d[2.1(IIT)], else there is a 3PC(h,a) or a 3PC(k,c).

Furthermore w cannot be of Type e[2.1(III)] or of Type h[2.1(III)] or of
Type i[2.1(1II)] or of Type o[2.1(1I1)}, else w has a neighbor in Py. If w is of
‘I'ype g[2.1(1I1)}, then w is a twin of a node in T.

We finally examine the case in which w is of Type f[2.1(III)]. Let w; be
the neighbor of w in V(P;)\ {a} and w, be the neighbor of w in V(P;)\ {c}.

If wy # b and w; # d, there is a 3PC(w, b). If w; = b and w; # d, there
is an odd wheel with center . So we must have w; = b and w; = d. Hence
w is of Type a. O

Definition 2.2 Let S,(X) be the set of nodes adjacent to nodes e and g and
a node in P,. Note that, for any node o’ € S,(X), there are connected squares
¥’ containing a’ but not a. When no confusion can occur, we simply write S,
for So(E). The sets S, S., Sy, Tv, T4, Ty, Th are defined analogously. Define
Sac to be the set of nodes w such that N(w) N V(X) = {e,g}. Note that, a
node in S, may replace either a or c in connected squares that contain seven
of the nodes a,b,c,d,e, f,g,h. The sets Sq, Toa, Ty are defined analogously.
Finally, let S = SaUScUSCUSgUS“USeg andT = TUTUT VT UT,qUTyy,.

As a consequence of Theorem 2.1, the set S, is made up by node a and
all the Type a[2.1] nodes that are adjacent to e and g and a node in P,. The
set S,c is made up by all the Type b[2.1] nodes that are adjacent to e and
g. Furthermore the set S is made up by the node set {a,c,e,g} and all the
nodes that are strongly adjacent to £ and have two neighbors in {a, ¢, e, g}.

Lemma 2.3 The sets S and T are disjoint and no node of S is adjacent to
a node of T.

Proof: The first property follows immediately from Theorem 2.1. If the
second property does not hold, there is a 3-path configuration connecting a
node in {a,c,e,g} and a node in {,d, f,h}. O

Let v be a node in S,.US., and consider the following classification of the
paths in the family P,(X) of direct connections between v and T, avoiding
the set S\ {v}. When no confusion arises, we write P, instead of P,(Z).
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Classification 2.4 Let P = z,,z,,...,, be a direct connection in P, where
z, 15 adjacent to v and z, is adjacent to a node in T

o P is attached if z, is adjacent to a node in T,UT,UT;UT, .

e P is detached if z,, is not adjacent to any node in T, UTy U Ty UT,.
Hence z,, is adjacent only to nodes in Tyq U Typ.

The above classification induces a classification of the strongly adjacent nodes
of Type b[2.1]:

Classification 2.5 Let v € S;c U S,.

o Node v is attached if v has at least one attached direct connection in

P,.

e Node v is detached if P, is nonempty and all the direct connections in
P, are detached.

e Node v is separable if P, is empty.

Similarly, each node w € Ty U Ty, is classified as attached, detached,
separable, based on the direct connections in P,, between w and S, avoiding
T\ {w}.

In the remainder of this section we study properties of a direct connection
P = z,,z9,...,z, in P, and we assume that v € S,. and that z, is adjacent
to v.

Definition 2.6 A direct connection P = z,,z,,...,z, in P, is minimal if,
in the subgraph induced by the nodes in V(P)U V(Z), no direct connection
P’ € P, exists, such that

V(P)\V(E) cV(P)\V(E)

Remark 2.7 The following properties hold for a minimal direct connection
in P,.

o Ifv is detached, then every direct connection in P, is minimal.

o Let P = zy,22,...,%n be a minimal direct connection, and let z; be the
node with highest indez in V(P)\ V(X). Then no node z;, 1 < j—1 is
adjacent to a node in V(X) \ {a,c,e,g}.
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Lemma 2.8 Let v € S,. be an attached node, and let P = z,,%,,...,T, be
an attached minimal direct connection in P,, where z,, is adjacent to a node
t € TL,UT4UT;UT, and z; is the node of highest indezx in V(P) \ V().
Then the following holds:

(1) Nodet belongs to T, U Ty, say t € T,.
(i1) The nodes of N(z;) N V(X) are contained in P,.

(ii1) Node a is adjacent to at most one node z;, i < j and no node z;, i < j
is adjacent to a node in the set {c,e,g}.

(iv) Node z, cannot be adjacent to a node t € T, and to a node t' € T;.

Proof: Since P is a minimal direct connection in P,, nonode z;, 1 <1 <
1 — 1 is adjacent to a node in V(Z) \ {a,c,€e,9}. We now divide the proof
into the following claims:

Claim 1 If z; is strongly adjacent to ¥ and is of Type c[2.1], then no
node x;, 1 < j ts adjacent to a node in the set {a,c,e,g}.

Proof of Clatm 1: Assume that z; has a neighbor z; in P, and z; in P,.
Let z;, i < j be the node of highest index adjacent to a node z* € {a,c,e,g}.

If z* = e, the following three paths induce a 3PC(b, ¢).

Ql = bvf’P3ae Q2 = b,h,P4,g,c,e ;Q3= bs""zl’zijz'tnzt"e

2

Similarly, if z* = g, There is a 3PC(b, g).

If z* = a, then z, is adjacent to a, else there is a 3PC(2;,a). Now let @ be
the shortest path from z; to e, using intermediate nodes in V(P;,_,r,)U {v}.
Then the hole H = z;, P; ;,,2:,Q,¢, Ps, f,b,...,21,; induces a wheel with
center a.

If z* = ¢, the proof follows by symmetry and if z; has a neighbor in P;
and a neighbor in P,, the proof is identical.

Claim 2 The set N(z;) N V(X) is contained in one of the sets V(P),
V(P,), V(Ps), V(Py).

Proof of Claim 2: Assume the contrary holds. Then, by Theorem 2.1 and
the fact that z; € SUT, node z; is of Type c[2.1]. Assume that node z; has




Figure 3:

neighbors 2z, € P, and z; € B, By Claim 1, the following three paths induce
a 3PC(e,z;), see Figure 3(a).

Q1 =¢€,v,2, Prizjyz; Qr=e,a,...,2,%; Qa=e¢,c,...,22,%;

Assume now that z; has neighbors z3 € P; and z € Py, see Figure 3(b).

Then v and z; are not adjacent, else there is a wheel with center z;. Now,
by Claim 1, there is a 3PC(v, z;).

Claim 3 Let z be a node in {b,d, f,h}, P; € { P\, P2, Ps, Py} be the path
whose endnode is z and let w € {a,c, e, g} the other endnode of P;. Ift € T,
then no node z;, | < j — 1 can be adjacent to a node of V(X) \ {w}.

Proof of Claim 3: Assume that t € T}, and that P contains a node z;,
t < j, adjacent to a node in the set {a,c,e}. Let z; be the node of highest
index, adjacent to a node in the set {a,c,e}. As a consequence of Claim 2,
the set N(z;) N V(X) is contained in Py (possibly, N(z;) N V(X) is empty
when j = n). If z; is adjacent to a or c there is a 3PC(t,a) or a 3PC(t,c).
If z; is adjacent to e, there is a 3PC(e,d). H t € T, U T, U Ty, the proof is
identical.

We now prove Part (i) of Lemma 2.8: Assume t € Ty U T}, say t belongs
to Ty, see Figure 4(a). Then by Claim 2, the set N(z;) N V(X) is contained
in P3 and by Claim 3, no node z;, | < j, is adjacent to a node in the set
{a,c,g}. Then the following three paths induce a 3PC(bd, g).

Ql = bvtaP’v$g Q2 = b’Pha$g Q3 =bah,P4ag
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Figure 5: Attached direct connections

Part (ii) now follows from Part (i) and Claim 2. Part (iii) follows from
the assumption that the graph contains no wheel and Claim 3.

We finally prove Part (iv). It follows from Part (iii) that no intermediate
node of P is adjacent to a node in £. This shows the existence of a 3PC(t, g),
see Figure 4(b). O

Remark 2.9 Lemma 2.8 shows that, up to symmetry, Figure 5 depicts all
the possible attached direct connections in P,, where, in Figure 5(a), node a

may not be adjacent to a node r; of P and node ; may have two neighbors
in P1 .

We now characterize detached direct connections in P,, where v is a
detached node.




Lemma 2.10 Let P = r,,73,...,T, be a direct connection in P,, where
z, is adjacent to a detached node v € S,. and z, is adjacent to a node
t € TyaU Tyn. Then P satisfies the following properties;

e No node z;, 1 <i < n is adjacent to a node in X.
e Node t belongs to Ty4.

Proof: Since v is a detached node, then no node z;, 1 <1 < n is adjacent to
a node in V(X)\ {a,c,e,g}. Let z; be the node with highest index adjacent
to a (unique) node in the set {a,c,e,g}. Assume t € Tyy. I z; is adjacent to
a or c, there is a 3PC(a, f) or a 3PC(c, f). If z; is adjacent to ¢ or g, there
is a 3PC(e,t) or a 3PC(g,t). If t € Ty, the proof is identical. Hence the
first part of the lemma follows. The second part now follows immediately,
for, if t € Ty, there is a 3PC(b,g). O

3 Bicliques in Connected Squares

Definition 3.1 Consider the following node sets, associated to connected
squares X:

e §'(X) = S,US.US.US,U{z € 5,.US,, : x is attached }U{z € S, :
is detached }. When no confusion arises, we write S’ instead of S'(X).

¢ 8" =5,U8.US.US,U {z € SscUS, :z is attached } U {z € S.y : z
is detached}.

. T'=T5UT¢UTIUT1,U{$ET(,.{UT!;.:.? isattached}U{xGde:x
is detached}.

e T"=T,UTqUT;UTU{z € ToaU Tyn: z is attached } U {z € Typ : x
is detached}.

¢ S*=5'US"=85\{z € 8. US,, : z is separable}.
o T*=T'UT" =T\ {z € TyaU Ty : z is separable}.
We denote by Ks/(T), Ksv(X), K1(X), K1+(E), Ks+(X), K1+(X) the sub-

graphs of G induced by the above node sets. Again, when no confusion is
possible, we write Kg instead of Ks/(X).
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The goal of this section is to prove the following theorem:

Theorem 3.2 FEach of the subgraphs Ks:, Ksu, K1:, K7n ts a biclique in
connected squares L.
Furthermore, K. is a biclique if and only if Kr. is a biclique.

The following lemmas show that new connected squares can be obtained
from I by replacing two paths from { P,, P2, P3, P4} by (attached or detached)
minimal direct connections. All the combinations of pairs of paths needed
for the proof of Theorem 3.2 will be considered in the lemmas.

Definition 3.3 Let z be a node in S, \ {a}. Then z belongs to a unique
connected squares £*, such that V(X*)\ V(Z) = {z}. Connected squares T*
is satd to be obtained from ¥ by substitution of node a with node z. When
z = a, it will be convenient to write, by extension, that T* = ¥ is obtained
by substitution of node a with node z.

Let v € S,.(X) be an attached node, having minimal attached direct
connection P = z,,z,,...,2, in P,, where z,, is adjacent to a node t €
Ty(X). Then Lemma 2.8 shows the eristence of connected squares I* =
CS(v,P,t, P,, P3, P;). Then £* is said to be obtained from T by substitu-
tion of path P, with v, P,t.

Remark 3.4 Let v € S.c(E) and t € Tyy(X) be two detached nodes linked
by a detached direct connection P in P,. Then Lemma 2.10 shows the
eristence of connected squares L* = CS(v,P,t, P, P;, P;) and £** =
CS(P,,v,P,t, P35, P,) obtained from ¥ by substituting respectively P, with
v, P,t and P, with v, P,t.

Furthermore P is a direct connectici. in both P, and P;.

Lemma 3.5 Let u € So(E)USAZYUTH(E)UTy(X) and v € S.(E)US,(Z)U
Ty(Z)U Th(X). W.lo.g. assume u € S;(X) and v € S.(L) U Ty(X).

Let ¥, be the connected squares obtained from ¥ by substituting node a
with u. Then connected squares L, can be obtained from ¥, by substituting
a node of £, with v. Furthermore, if ¥,, is defined by substituting first node
v and then node u, then ¥, and X,, coincide.

Proof: We show that u and v are adjacent if and only if both u and v belong
to either S(X) or T(X). If v € S.(X), then u and v are adjacent, else there is
a 3PC(c, f). If v € Ty(Y), then u and v are adjacent, by Lemma 2.3. Now
the proof follows. O
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Lemma 3.6 Let u be a node in S,(X) and P be a minimal direct connection
in P, between an attached node v € S.y(X) and a Type a[2.1] node w € Ty(Z).
Let ¥, be obtained from ¥ by substituting a with u and L, be obtained from
¥ by substituting P3 with v, P,w. Then u can be substituted for a in ¥, and
v, P,w can be substituted for P; in ¥, and the two connected squares thus
obtained cotncide.

Proof: We show that u is adjacent to v and u is not adjacent to a node in
{w}uV(P).

By Lemma 2.3, nodes u and w are nonadjacent. Node u is adjacent to v
and is not adjacent to a node of P, otherwise u is a strongly adjacent node
in ., not satisfiying Theorem 2.1. O

Lemma 3.7 Let P be a minimal direct connection in P, between an attached
node u € S,.(X) and t € Ty(Z). Let Q be a minimal direct connection in P,
between an attached node v € S.4(X) and w € Ty(X). Let X, be obtained from
¥ by substituting P, with u, P,t. Let ¥, be obtained from ¥ by substituting
P3 with v, Q, w.

Then v,Q,w can be substituted for P; in ¥, and u, P,t can be substituted
for Py in L, and the two connected squares thus obtained coincide.

Proof: We show that u and v are adjacent, ¢t and w are adjacent, and no
other adjacency exists, between nodes in {u,t} U V(P) and {v,w} U V(Q).
We first prove the following claim:

Claim Nodes t and w are adjacent. Node t is not adjacent to a node in
V(Q) U {v}. Node w is not adjacent to a node in V(P) U {u}.

Proof of Claim: The first part of the claim follows from Lemma 3.5.

Assume that t is adjacent to a node in V(Q)U {v}. Then t is a strongly
adjacent node in ¥,, violating Theorem 2.1. The proof of the claim is now
complete by symmetry.

Now node u cannot have a neighbor in V(Q) U {w}, else u is a strongly
adjacent node in X, violating Theorem 2.1. Similarly, v cannot have a
neighbor in V(P) U {t}.

Let £* be the connected squares obtained by substituting b with t and f
with w.

No node of P is adjacent to a node of @, else u or v is attached in I*,
having a minimal direct connection in P, or P, not satisfying Lemma 2.8.
Finally u and v are adjacent, else there is a 3PC(e,t). O
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Lemma 3.8 Let u be an attached node in S,.(¥), having minimal direct
connection P in P, to a node t € Ty(X). Let v € S 4(X) be a detached
node, having direct connection @ in P, to a node w € Tya(X). Let £, be
obtained from ¥ by substituting P, with u, P,t. Let ¥, be obtained from ¥
by substituting P; with v,Q,w. Then v,Q,w can be substituted for P5 in L,
and u, P,t can be substituted for P, in X, and the two connected squares thus
obtained coincide.

Proof: Again, we show that u and v are adjacent, { and w are adjacent
also, and no other adjacency exists between nodes in {u,t} U V(P) and
{v,w} LU V(Q).

Let L, be the connected squares obtained fron ¥ by substituting b with
t.

Then nodes t and v are not adjacent, else v is a strongly adjacent node
in X, violating Theorem 2.1. If ¢ is not adjacent to w or if ¢ is adjacent to
a node of @, then node v is an attached node in ¥,, having minimali direct
connection in P, violating Lemma 2.8. Hence t is adjacent to w and ¢ is not
adjacent to any node in {v} U V(Q).

Now u is adjacent to v, and no other adjacency exists, between the nodes
in V(P)U {u} and V(Q) U {v,w}, else w is an attached node in X, having
an attached minimal direct connection in P,, not satisfying Lemma 2.8. O

Lemma 3.9 Let u be a node in So(X). Let v € S.4(X) be a detached node,
having direct connection P in P, to a node w € Tyx(X). Let £, be obtained
from ¥ by substituting a with u. Let £, be obtained from ¥ by substituting
P; with v, P,w. Then v, P,w can be substituted for P; in ¥, and u can be
substituted for a in ¥, and the two connected squares thus obtained coincide.

Proof: If u is adjacent to w, node w violates Theorem 2.1 in £,. If u
is adjacent to P, the node w has an attached direct connection, violating
Lemma 2.8. If u is not adjacent to v, there is a 3PC(b,e). O

Lemma 3.10 Let u be a detached node in S,.(¥X), having direct connection
P in P, to a node t € Tyy(X). Let v € S.o(X) br a detached node, having
direct connection Q in P, to a node w € Tyn(X). Let L, be obtained from T
by substituting P, with u, P,t. Let T, be obtained from ¥ by substituting P
with v,Q, w.




(i) If u and v are adjacent, v,Q,w can be substituted for P; in T, and
u, P,t can be substituted for P, in X, and the two connected squares
thus obtained coincide.

(ii) If v and v are nonadjacent, no adjacency erists between the nodes in

{v,t} U V(P) and {v,w} U V(Q).

Proof: By Lemma 2.3, nodes u and w are nonadjacent. If w is adjacent to
P, there is a detached direct connection in P, which violates Lemma 2.10.
By symmetry, t is not adjacent to {v} U V(Q).

If u and v are adjacent, then t is adjacent to w, else there is a 3PC/(c, u).
This proves Part (i).

If u and v are nonadjacent, then ¢ and v are nonadjacent, else there is a
3PC(b,t). This proves Part (ii). D

Proof of Theorem 3.2: First we show that K is a biclique.

Let u € S, U S,. Then u is adjacent to every node in S, U S, by Lemma
3.5, to every attached node in S,. by Lemma 3.6 and to every detached node
in S;c by Lemma 3.9.

Let u € S.;. Then u is adjacent to every attached node in S,. by Lemma
3.7 and to every detached node in S,. by Lemma 3.8.

This shows that K is a biclique. By symmetry, Ks», K7+ and K7~ are
bicliques. The last statement of the theorem follows from Lemma 3.10. D

4 A Property of Bicliques

Theorem 4.1 There ezist connected squares T* whose induced subgraphs
Ks. and K1. are both bicliques.

Proof: In this proof, when we say that nodes z and y are lmked by a direct
connection P, we define P = z,P,y. Let £° = CS(P?, P?, P?, P?) be con-
nectedsqua.reswnthP°—a b° Pl=c,...,d, P:?:e,...,f",Pf:
g% ..., h% If Ks.(2°) is not a biclique then, by Theorem 3.2 and Lemma
3. 10 there exist one pair of detached nodes a' € S,00(E°), and b! € Typ(E°)
linked by a direct connection P! in P,1(X%and another pair of detached
nodes g' € S,000(X%) and h' € Tyopo(Z°) linked by a direct connection P} in
P,1(X°) such that no adjacency exists between the nodes of P} and P}, see
Figure 6.
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Figure 6:

Let X! be the connected squares obtained by substituting in £° the path
P? with the path P!. If Ks.(T!) is not a biclique, then in X! there exist
a detached node a? € S,10(Z!), having direct connection P? in P,2(X!) to
a detached node b € Ty p(X!) and a detached node g2 € S.oz0(E?), having
direct connection P} in P,2(Z') to a detached node h? € Tyopo(E!) such
that no adjacency exists between the nodes of P? and P?. Note that, at this
stage, we are not ruling out a? = a°.

By Lemma 3.10, the subgraph induced by V(E')UV/(PZ)UV(P?) has no
other adjacencies except the ones shown in Figure 7.

We now show that the configuration of Figure 8 is induced, that is, the
only adjacencies of P? and P} with the subgraph of Figure 7 are depicted
in Figure 8. In other words, we need to establish the adjacencies between
V(P?) and V(P}), between V(P?) and V(P?), between V(P?) and V(P})
and between V(P?) and V(P?).

Note that A? # h!, since h, is adjacent to b; but h; is not. Furthermore
h? # RO, since h° is adjacent to b% but A? is not. The same argument shows
that b # b, ¢*> # g' , ¢* # ¢° and a® # a'.

Claim 1 Node g? is not adjacent to any node in V(P?)U V(P})\ {a°}.

14




Figure 7:

Figure 8:
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Figure 9:

Proof of Clatm 1: Let I, be the connected squares obtained by substi-
tuting in X° the path P{ with P}. Assume that node g2 has a neighbor in
P}. Then ¢? is a strongly adjacent node in £; and by Theorem 2.1 node
g° € S;1(Z1). Hence ¢? is adjacent to a®. Let I} be the connected squares
obtained by substituting g' with g% in £;. Theorem 2.1 applied to X} shows
that g! either belongs to S,2(Z}) or is an attached node in Seoz2(X37). Since
a' is a detached or an attached node in ¥j, Lemmas 3.6-3.9 applied to ¥j
show that a! and ¢! are adjacent, a contradiction.

Finally, node g? cannot have a neighbor in V(PP) \ {a°}, otherwise g* is
a strongly adjacent node in ¥°, violating Theorem 2.1.

By symmetry, the above proof shows the following:
Claim 2 Node h? is not adjacent to any node in V(P?) U V(P}) \ {8°}.

Claim 3 No node of i’} is adjacent to or coincident with a node of P}.

Proof of Claim 8: Claims 1 and 2 show that no node of P! is adjacent to
g* or k2. Let z € V(P}) and y € V(P?) be two adjacent or coincident nodes
such that the length of the g'z-subpath of P} is minimized and the length of
the h%y-subpath of P? is minimized. Then since ¢! and a! are nonadjacent,
the following three paths induce a 3PC(€°, b'), see Figure 9.

— o0 0 1 2 311 — 50 1 1 11 — g0 3 1
Q]—C,C,g ’-'-’x’ya-'-ah ab QQ“e,avplab Q3—6 ,Po,fo,b

Claim 4 Nodes g? and a° are adjacent and nodes h? and b° are adjacent.
Nodes g* and b° are nonadjacent and nodes h? and a° are nonadjacent.
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Figure 10:

Proof of Claim 4: Since nodes g%, h?,a® and &° are attached or detached in
connected squares L!, Theorem 3.2 shows that nodes g? and a° are adjacent
if and only if nodes h? and &° are adjacent. Assume that g2 and a° are
nonadjacent. Then the following three paths induce a 3PC(e°, d°):

Ql=607P30’f0’d0’ Q2=eoiaoiglsP4lahl)do) Q3=eoial’92,P421h2,do

If g? and b° are adjacent, then ¢ is a strongly adjacent node in X9, violating
Theorem 2.1. By symmetry, the proof is now complete.

Note that Claim 4 implies that a? # a° and & # t° .

Claim 5 No node of P} is adjacent to or coincident with a node of P).

Proof of Claim 5: Assume not. Then in £° node g? or A2 is an attached
node having a minimal direct connection in P,2(Z°) or in Pj2(X°) violating
Lemma 2.8.

Claim 6 Nodes a® and b? are not adjacent to any node in P}.

Proof of Claim 6: Let X, be the connected squares defined in the proof
of Claim 1. Node b can only be adjacent to A! in P}, otherwise ¥ is a
strongly adjacent node in X;, not satisfying Theorem 2.1. If 4? is adjacent
to k!, consider the chordless cycle H = b, k!, P}, g", % g%, P2, h2, b, f°, 12,
see Figure 10. Then (H,b°) is an odd wheel. The proof for a? follows by
symmetry.

Claim 7 Nodes a® and b are not adjacent to any node in PY.
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Proof of Claim 7: Assume by contradiction that node a? has a neighbor
in P0. Then node a? belongs to S,(X°). Now Lemma 3.9 applied to Xy shows
that a? and ¢* are adjacent, a contradiction.

Claim 8 No node of P? is adjacent to a node in P?.

Proof of Claim 8: Assume not. Then nodes a? and b? are attached nodes
in £° Again, Lemma 3.8 applied to £° shows that a? and g? or b® and h?
are adjacent, a contradiction.

Claim 9 No node of P? is adjacent to a node in P}.

Proof of Claim 9: Assume not. Then nodes a? or b% are detached nodes
in £° , having minimal direct connections in P,2(Z°) or in Py2(X?) violating
Lemma 2.10.

Claims 1-9 show that the graph of Figure 8 is induced.

Starting from X°, we construct a sequence of connected squares X!, X2
..., "1 T" as follows:

If Ks.(2-!) and Kr+(Z'!) are not bicliques, there exist two pairs of non-
adjacent nodes a‘,b* and g',h’ that are detached in £*~! and have detached
direct connections P} and P in P,(X""1) and in P,:(Z*!) respectively.

Connected squares L' are obtained by substituting in £*~! the path P!
with P}. Consider now the following property:

Property 10 Every ¥, 0 < ¢ < n, satisfies the following:
10.1 Node h' is adjacent to d° and to the nodes ¥, 0 < j <i—1
10.2 Node ¢' is adjacent to c® and to the nodes a’, 0 < j <i—1
10.3 Node a' is adjacent to €°,g° and to no node ¢°, 1 < j < i
10.4 Node b is adjacent to h°, f° and to no node b7, 1 < j <1

10.5 No node of V(P!)U V(Pj) is adjacent to a node in the set

U v U vPHuv(r)

1<5<4 1<k<i-1
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Figure 11:

Claims 1-9 show that Property 10 holds for £, £! and ¥2, and Figure
11 shows the adjacencies, according to Property 10, between nodes &' and
R, 0<1<4.

Assume that £'~! does not satisfy the theorem. Hence with respect to
-1 there exist two pairs of nonadjacent detached nodes af, % and ¢, 4’
having direct connections P} and P; in P,:(X*!) and in P,:(Z*~!) respec-
tively. We inductively assume that Property 10 holds for n = 7 — 1 and we
show the following;:

Claim 11 The nodes in the set V(P) U V(P]) satisfy Property 10.

Proof of Claim 11: The above inductive hypothesis shows that for all
indices |, m such that 0 <! < m < i-1, the pairs of nodes a™,b™ and g™, h™
constitute two pairs of nonadjacent detached nodes in X', having detached
direct connections P and P in P, (') and in P,m(ZT') respectively. Hence
L™ is also obtained from L' by substituting P} with P

This implies that nodes a‘~!,b'"! and g, h*~! constitute two pairs of
nonadjacent detached nodes with respect to £/, for all 0 <1 < ¢ — 1. Hence
the graph G', induced by the node set

VEHYU V(P U V(P U V(P U V(R
is isomorphic to the graph of Figure 8 induced by the node set V(XZ°%) U

V(PHUV(PHUV(PY)UV(P?). Hence by applying Claims 1-9 to G', we
have that Properties 10.1, 10.2 hold. Furthermore Properties 10.3 and 10.4
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hold for j =1—1, and Property 10.5 holds except for the adjacencies between
nodes of V(P}) U V(P;) and the nodes in the set U;¢j<i—2 V(P4)

This implies that nodes a*,b' and ¢, h* constitute a pair of nonadjacent
detached nodes with respect to ¥4, for all 0 < j < i —1. Hence by applying
Claims 1-9 to the graph induced by the nodes V(SO)UV(P’)UV(P’)UV(P‘)U
V(Pi) we have that no node of V(P}) U V(B;) is adjacent to a node in the
set Urj<i-2 V(P}). This completes the proof of Property 10.5. Furthermore
Properties 10.3 and 10.4 hold for all 1 < j < i — 2. This proves Claim 11.

The proof of the theorem is now complete by finiteness of the graph,
since an unlimited sequence of connected squares X°,...,%, ..., X" implies
an unlimited growth in the size of the node set of the graph. O

5 Biclique Cutsets and 2-Joins

Throughout this section we assume that connected squares ¥ = CS(P,, P,
Ps, P,) satisfy Theorem 4.1. That is, both subgraphs Ks. and K. are bi-
cliques.

Theorem 5.1 If connected squares ¥ contain a separable node v, then Kg.
or Kr. is a biclique cutset, separating v from X.

Proof: By definition, no direct connection between v and T avoids S \ {v}.
Let zx be the node of S\ {v} with highest index in a direct connection
P =1,,z,,...,7, between v and T. Then z, either belongs to S,US.US.US,
or is an attached or detached node in S,. U S.,. Hence z; belongs to S*. O

We now further assume that connected squares ¥ contain no separable
node. Hence S = S* and T = T*. We define G*(V, E*) to be the partial
subgraph obtained from G(V, E) by removing the edge set E(Ks)U E(Kr).

Definition 5.2 Let S = SNV, S =SSNV and T =TnNV, Tr =
TNVr. Let W€ be the set of nodes which belong to at least one minimal direct
connection in P, from a node v in SUT* and let Z¢ = WeUSUT*. Similarly,

let WT be the subset of nodes in at least one minimal direct connection from
anode in STUT  andlet Z" =WTUS"UT".

Lemmas 3.5-3.10 show the following:
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Remark 5.3 For every pair of nodes u € Z° and v € Z7, there ezist the
following connected squares:

T¢ with the following properties:

e Connected squares L* are obtained from ¥ = CS(P,, P2, P3, Py) by sub-
stituting at most one path P, or P; with a path P*.

e Node u belongs to P*.

Tv with the following properties:

e Connected squares LV are obtained from ¥ = CS(P,, Ps, Ps, Py) by sub-
stituting at most one path P; or Py with a path P*.

e Node v belongs to P*.
Tw with the following properties:

e Connected squares T*° are obtained from ¥ = CS(P,, P,, Ps, Py) by
substituting at most one path P, or P, with a path P* and at most one
path Py or Py with a path P*.

e Node u belongs to P* and node v belongs to P*.

Lemma 5.4 The node sets Z¢ and Z" satisfy the following properties:

e In G*(V, E*), no node of Z¢ is adjacent to or coincident with a node of
zr.

o In G*(V,E*), no node w € Z°U Z" is adjacent to a node in Z¢ and a
node in Z”.

Proof: The first part of the lemma follows directly from Remark 5.3.

Assume that a node w € Z°U Z" is adjacent to a node u in Z¢ and a
node v in Z”. Node w is not strongly adjacent to Z, else w € S(£) U T (),
contradicting the assumption w ¢ Z°U Z". Let &% = CS(P¥, P, P53, ),
v =CS(h, P, P, Py) and £** = CS(P*, P, P*, P;) be connected squares
defined in Remark 5.3 where w.l.o.g. we assume that P, is substituted with
P* and P; is substituted with PY. Theorem 2.1 shows that node w is a Type
a[2.1] node in I**. This shows that w is a strongly adjacent node in £* or
in v, violating Theorem 2.1. O
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Theorem 5.5 Let £ be a connected squares. If E(Ks) U E(KT) is not a 2-
join of G and neither Ks nor Kt is a bicliqgue cutset of G, then there exists
a path P = z,,2,,...,2,, n > 1 with at least one of the following properties:

o The path P is a direct connection between Z°\ S¢ and Z"\T", avoiding
S¢UTT such that no node z;, 1 < i < n is adjacent to a node in T".

o The path P is a direct connection between Z¢\ S¢ and Z"\T", avoiding
S¢UTT such that no node z;, 1 < i < n is adjacent to a node in S°.

e The path P is a direct connection between Z°\T° and Z"\ S", avoiding
T U S™ such that no node z;, 1 < i < n is adjacent to a node in T°.

o The path P is a direct connection between Z°\ T and Z"\ S”, avoiding
T°U S such that no node z;, 1 < i < n is adjacent to a node in S”.

Proof: By Lemma 5.4 no node of Z¢ is adjacent to or coincident with a node
of Z". Hence since E(Ks)UFE(KT) is not a 2-join, there exists in G*(V, E*) a
direct connection P = z,,z,,...,r, between Z¢ and Z7, where z, is adjacent
to a node in Z°¢ and z,, is adjacent to a node in Z". Furthermore Lemma 5.4
shows that n > 1.

If (N(z1)UN(z,))N(Z°UZ7) € S and (N(z1)UN(z,))N(Z°VUZ7) L T,
then P belongs to at least one of the above four families of direct connections
and we are done. So assume w.l.o.g. that (N(z;)UN(z,))N(Z°UZ")C S,
that is, the set N(z;) N (Z°U Z7) is contained in S° and the set N(z,) N
(Z°U Z7) is contained in S”.

Since K is not a biclique cutset, separating P from Z¢UZ", there exists a
direct connection Q = y1,¥2,...,Ym between V(P) and Z°U Z" and avoiding
S, where ¥, is adjacent to a node in V(P) and y,, is adjacent to a node in
Z°U Z". Note that for all 1 < i < m, we have that N(y;) N (Z°U Z7) C
S. Since Lemma 5.4 shows that y,, cannot be adjacent to a node in Z*
and a node in Z7, we assume w.l.o.g. that N(y,)N(Z°U Z7) C Z" and
N(ym)N(Z°UZ7)\ S #0.

If some node of Q is adjacent to a node in S¢, let y; # y., be such a
node with highest index. Then the y,y,,-subpath of @ is a direct connection
between Z¢\ T¢ and Z" \ S", avoiding T° U S™. Note that by construction,
an intermediate node of such subpath can not be adjacent to a node in T*.
Hence the theorem follows.

22




If nonode y;, 1 <7 < m in Q is adjacent to a node in S¢, let z; be
the node of P, adjacent to y; € V(Q) such that the length of the z;z;-
subpath Py; of P is the shortest. Then the path R = z,, P, z;,41,Q,Ym 15
a direct connection between Z¢\ T and Z" \ S”, avoiding 7° U S” such that
no intermediate node in R is adjacent to a node in 7. O

We now assume w.l.o.g. that P = z;,72,...,Z,, n > 1 is a direct
connection between Z¢\ S¢ and Z" \ T", avoiding S° U T" such that no node
z;, 1 <t < nis adjacent to a node in T".

Lemma 5.6 If z; is adjacent to a node of V(X) \ {a,c}, let u be such a
neighbor of z,. Otherwise let u be a neighbor of zy in Z¢\ S°(L).

If z,, is adjacent to a node of V(X)\ {f, h} let v be such a neighbor of z..
Otherwise let v be a neighbor of z, in Z" \ T"(X).

Let % = CS(P*, Py, P3, Py), ¥ = CS(#, P, P*, Py), % = CS(PY, P,
P*, P,) be connected squares obtained from ¥ = CS(P,, P, P3, P4) as in Re-
mark 5.8, where we assume w.l.o.g. that Py is substituted with P* and P; is
substituted with P*. Then the following holds:

(i) Either z, is a Type c[2.1] node in T*¥ and E* = ¥ (i.e. the path P*
coincides with Py ), or the set N(z,) N V(X*") is contained tn P*.

(ii) Either z,, is a Type c[2.1] node in T** and ¥ = ¥ (i.e. the path P®
coincides with P3), or the set N(x,) N V(E") is contained in P.

(iii) The set N(z;) N V(Z*) € {a“,c} for every node z;, 1 < i < n of P,
where a* = V(P¥)N S.

Proof: We prove Part (i). Assume N(z;) N (V(Z)\ {a,c}) # 0. Then z,
cannot be a Type a[2.1] or a Type b[2.1] strongly adjacent node to X, else
) € S(Z)UT(X). Hence Theorem 2.1 shows that either the set N(z,)NV(Z)
is contained in P; = P* or z; is a Type c[2.1] strongly adjacent node to ¥
and, by construction, * = ¥.

Assume N(z;)N(V(Z)\ {a,c}) = 0 and N(z1)N{a,c} = {a} or {c}, say
N(z,) N {a,c} = {a}. Let u € N(x,) N (Z¢\ S°(X)) be a node belonging to
a direct connection R in P,, between a node w € S(X) and t € T(X). If A
can be substituted with w, R, ¢, then (i) follows. If P, cannot be substituted
with w, R, t, then P; can be substituted with w, R, .
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Let £* be the connected squares obtained with the above substitution.
Then z, is a strongly adjacent node in £¥, violating Theorem 2.1.

Finally, if N(z;) N (V(Z) \ {a,c}) = 0 and N(z,) N {a,c} = @, by con-
struction, node z; has no neighbors in P}'. This completes the proof of Part
(1)-

Part (ii) follows by symmetry. Now, by assumption, for every node
z;, 1 <1 < n, the set N(z;)N(Z°U Z") is contained in S¢(X) and S¢(¥) N
V(Z*) = {a*,c}. This proves Part (iii). O

Theorem 5.7 The graph induced by V(X*') U V(P) is not signable to be
balanced.

Proof: We consider the following cases:

Case 1 The path P contains a node z;, 1 < 1 < n adjacent to a* and c*.

Proof of Case 1: Let z; be such a node with lowest index. Then z; is an
attached node in X", having the z,_;z;-subpath of P as attached minimal
direct connection in P,,. However this minimal direct connection violates
Lemma 2.8.

Case 2 The path P contains no node z; adjacent to both a* and ¢ and
node z, or node z, is of Type c[2.1] in L**.

Proof of Case 2: Assume that z, is of Type c[2.1] and assume w.l.o.g.
that z, has a neighbor 2, in P* and a neighbor z; in P,. The same argument
used in the proof of Claim 1 of Lemma 2.8 shows that ifanode z;, 1 <i<n
is adjacent to a*, then z; and a* are adjacent. If z; and ¢ are adjacent, then
z3 and c are adjacent. Finally, z; is not adjacent to a or 2, is not adjacent
to c.

If z, is a Type c[2.1] node in £*", having neighbors z3 in P¥ and z4 in P,
then no node z;, 1 < i < n is adjacent to a* or c, else there is a 3PC(z,, a*)
or a 3PC(z,,c). Hence there is a 3PC(z,, 23).

If z, is not a Type c[2.1] in E*, assume w.l.o.g. that z; and c are not
adjacent. Then there is a 3PC(z;,c). Hence z; cannot be a Type ¢[2.1] node.

The same argument shows that r, cannot be a Type c[2.1] node.

Case 3 The path P contains no node z; adjacent to both a* and c, and
neither node z, nor node z, is of Type c[2.1].

Proof of Case 3: By Lemma 5.6, we can assume w.l.o.g. that N(z,) C
V(P*) and that N(z,) C V(P"). Let a* and b* denote the endnodes of P
and e”, f¥ the endnodes of P".
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If there exists a node z;, 1 < ¢ < n adjacent to c, let z; be such a node
with lowest index and let u’ be the node of P* adjacent to z;, such that the
length of the u’b“-subpath P* of P* is shortest. Then the following three
paths induce a 3PC(c, h):

Q1 =czj,...,z1,u, P 0% hy Qa=c,g,Ps,h; Qs=c, P d,h

If no node z;, 1 < i < n is adjacent to c, there is again a 3PC(c, k). O
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'\:i'fére exist two complete bipartite graphs K, K, in G having disjoint node sets, with
8;/t.he property that the removal of the edges in K, K, disconnects G.
There exists a subset S of the nodes of G with the property that the removal of S
disconnects G, wher#'S can be partitioned into three disjoint sets T'A,N such that
D, some node is adjacent to every node jn AUN and, if /T'/2 2,then /A/ >

Zgnd evety node of 7' is adjacent to eva eof A,
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A 0,1 matrix is balanced if it does not contain a square submatrix of odd order with
two ones per row and per column. Balanced matrices are important in integer
programming and combinatorial optimization since the associated set packing and set
covering polytopes have integral vertices.

To a 0,1 matrix A we associate a bipartite graph mas follows: The node nets
V. and V represent the row set and the column set of A and edge ij belongs to E if
and only if ag=1. Since a 0,1 matrix is balanced if and only if the associated bipartite
graph does not contain a chordless cycle of length 4k+2, the above theorem provides
a decomposition of balanced matrices into elementary matrices whose associated
bipartite graphs have no cycle of length 4k+2. In Part VII of the paper, we show how
to use this decomposition theorem to test in’iolynomial time whether a 0,1 matrix
is balanced.




